A compact variant of the QCR method for quadratically constrained quadratic 0-1 programs

نویسندگان

  • Laura Galli
  • Adam N. Letchford
چکیده

Quadratic Convex Reformulation (QCR) is a technique that was originally proposed for quadratic 0-1 programs, and then extended to various other problems. It is used to convert non-convex instances into convex ones, in such a way that the bound obtained by solving the continuous relaxation of the reformulated instance is as strong as possible. In this paper, we focus on the case of quadratically constrained quadratic 0-1 programs. The variant of QCR previously proposed for this case involves the addition of a quadratic number of auxiliary continuous variables. We show that, in fact, at most one additional variable is needed. Some computational results are also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using quadratic convex reformulation to tighten the convex relaxation of a quadratic program with complementarity constraints

Quadratic Convex Reformulation (QCR) is a technique that has been proposed for binary and mixed integer quadratic programs. In this paper, we extend the QCR method to convex quadratic programs with linear complementarity constraints (QPCCs). Due to the complementarity relationship between the nonnegative variables y and w, a term yDw can be added to the QPCC objective function, where D is a non...

متن کامل

Improving standard solvers convex reformulation for constrained quadratic 0-1 programs: the QCR method

Let (QP ) be a 0-1 quadratic program which consists in minimizing a quadratic function subject to linear equality constraints. In this paper, we present QCR, a general method to reformulate (QP ) into an equivalent 0-1 program with a convex quadratic objective function. The reformulated problem can then be efficiently solved by a classical branch-and-bound algorithm, based on continuous relaxat...

متن کامل

A semidefinite relaxation scheme for quadratically constrained

  Semidefinite optimization relaxations are among the widely used approaches to find global optimal or approximate solutions for many nonconvex problems. Here, we consider a specific quadratically constrained quadratic problem with an additional linear constraint. We prove that under certain conditions the semidefinite relaxation approach enables us to find a global optimal solution of the unde...

متن کامل

AFRL-OSR-VA-TR-2014-0126 Global Resolution of Convex Programs with Complementarity Constraints

Quadratic Convex Reformulation (QCR) is a technique that has been proposed for binary and mixed integer quadratic programs. In this paper, we extend the QCR method to convex quadratic programs with linear complementarity constraints (QPCCs). Due to the complementarity relationship between the nonnegative variables y and w, a term yDw can be added to the QPCC objective function, where D is a non...

متن کامل

Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: The QCR method

Let (QP) be a 0-1 quadratic program which consists in minimizing a quadratic function subject to linear equality constraints. In this paper, we present QCR, a general method to reformulate (QP) into an equivalent 0-1 program with a convex quadratic objective function. The reformulated problem can then be efficiently solved by a classical branch-and-bound algorithm, based on continuous relaxatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Letters

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014